39 research outputs found

    Latent Geometry for Complementarity-Driven Networks

    Full text link
    Networks of interdisciplinary teams, biological interactions as well as food webs are examples of networks that are shaped by complementarity principles: connections in these networks are preferentially established between nodes with complementary properties. We propose a geometric framework for complementarity-driven networks. In doing so we first argue that traditional geometric representations, e.g., embeddings of networks into latent metric spaces, are not applicable to complementarity-driven networks due to the contradiction between the triangle inequality in latent metric spaces and the non-transitivity of complementarity. We then propose the cross-geometric representation for these complementarity-driven networks and demonstrate that this representation (i) follows naturally from the complementarity rule, (ii) is consistent with the metric property of the latent space, (iii) reproduces structural properties of real complementarity-driven networks, if the latent space is the hyperbolic disk, and (iv) allows for prediction of missing links in complementarity-driven networks with accuracy surpassing existing similarity-based methods. The proposed framework challenges social network analysis intuition and tools that are routinely applied to complementarity-driven networks and offers new avenues towards descriptive and prescriptive analysis of systems in science of science and biomedicine

    Long-Range Correlations and Memory in the Dynamics of Internet Interdomain Routing

    Full text link
    Data transfer is one of the main functions of the Internet. The Internet consists of a large number of interconnected subnetworks or domains, known as Autonomous Systems. Due to privacy and other reasons the information about what route to use to reach devices within other Autonomous Systems is not readily available to any given Autonomous System. The Border Gateway Protocol is responsible for discovering and distributing this reachability information to all Autonomous Systems. Since the topology of the Internet is highly dynamic, all Autonomous Systems constantly exchange and update this reachability information in small chunks, known as routing control packets or Border Gateway Protocol updates. Motivated by scalability and predictability issues with the dynamics of these updates in the quickly growing Internet, we conduct a systematic time series analysis of Border Gateway Protocol update rates. We find that Border Gateway Protocol update time series are extremely volatile, exhibit long-term correlations and memory effects, similar to seismic time series, or temperature and stock market price fluctuations. The presented statistical characterization of Border Gateway Protocol update dynamics could serve as a ground truth for validation of existing and developing better models of Internet interdomain routing

    Cosmological networks

    Get PDF
    Networks often represent systems that do not have a long history of study in traditional fields of physics; albeit, there are some notable exceptions, such as energy landscapes and quantum gravity. Here, we consider networks that naturally arise in cosmology. Nodes in these networks are stationary observers uniformly distributed in an expanding open Friedmann-Lemaitre-Robertson-Walker universe with any scale factor and two observers are connected if one can causally influence the other. We show that these networks are growing Lorentz-invariant graphs with power-law distributions of node degrees. These networks encode maximum information about the observable universe available to a given observer

    Structure of Business Firm Networks and Scale-Free Models

    Get PDF
    We study the structure of business firm networks and scale-free models with degree distribution P(q)(q+c)λP(q) \propto (q+c)^{-\lambda} using the method of kk-shell decomposition.We find that the Life Sciences industry network consist of three components: a ``nucleus,'' which is a small well connected subgraph, ``tendrils,'' which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a ``bulk body'' which consists of the majority of nodes. At the same time we do not observe the above structure in the Information and Communication Technology sector of industry. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils decrease as λ\lambda increases and disappear for λ3\lambda \geq 3. We compare the kk-shell structure of random scale-free model networks with two real world business firm networks in the Life Sciences and in the Information and Communication Technology sectors. Our results suggest that the observed behavior of the kk-shell structure in the two industries is consistent with a recently proposed growth model that assumes the coexistence of both preferential and random agreements in the evolution of industrial networks

    Structure of Business Firm Networks and Scale-Free Models.

    Get PDF
    We study the structure of business firm networks in the Life Sciences (LS) and the Information and Communication Technology (ICT) sectors. We analyze business firm networks and scale-free models with degree distribution P(q) proportional to (q + c)^-λ using the method of k-shell decomposition. We find that the LS network consists of three components: a "nucleus", which is a small well connected subgraph, "tendrils", which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a "bulk body" which consists of the majority of nodes. At the same time we do not observe the above structure in the ICT network. Our results suggest that the sizes of the nucleus and the tendrils decrease as λ increases and disappear for λ greater or equal to 3. We compare the k-shell structure of random scale-free model networks with the real world business firm networks. The observed behavior of the k-shell structure in the two industries is consistent with a recently proposed growth model that assumes the coexistence of both preferential and random regimes in the evolution of industry networks.

    Betweenness Centrality of Fractal and Non-Fractal Scale-Free Model Networks and Tests on Real Networks

    Get PDF
    We study the betweenness centrality of fractal and non-fractal scale-free network models as well as real networks. We show that the correlation between degree and betweenness centrality CC of nodes is much weaker in fractal network models compared to non-fractal models. We also show that nodes of both fractal and non-fractal scale-free networks have power law betweenness centrality distribution P(C)CδP(C)\sim C^{-\delta}. We find that for non-fractal scale-free networks δ=2\delta = 2, and for fractal scale-free networks δ=21/dB\delta = 2-1/d_{B}, where dBd_{B} is the dimension of the fractal network. We support these results by explicit calculations on four real networks: pharmaceutical firms (N=6776), yeast (N=1458), WWW (N=2526), and a sample of Internet network at AS level (N=20566), where NN is the number of nodes in the largest connected component of a network. We also study the crossover phenomenon from fractal to non-fractal networks upon adding random edges to a fractal network. We show that the crossover length \ell^{*}, separating fractal and non-fractal regimes, scales with dimension dBd_{B} of the network as p1/dBp^{-1/d_{B}}, where pp is the density of random edges added to the network. We find that the correlation between degree and betweenness centrality increases with pp.Comment: 19 pages, 6 figures. Submitted to PR

    Betweenness Centrality of Fractal and Non-Fractal Scale-Free Model Networks and Tests on Real Networks

    Get PDF
    We study the betweenness centrality of fractal and non-fractal scale-free network models as well as real networks. We show that the correlation between degree and betweenness centrality C of nodes is much weaker in fractal network models compared to non-fractal models. We also show that nodes of both fractal and non-fractal scale-free networks have power law betweenness centrality distribution P(C) ~ C^δ. We find that for non-fractal scale-free networks δ = -2, and for fractal scale-free networks δ = -2 + 1/dB, where dB is the dimension of the fractal network. We support these results by explicit calculations on four real networks: pharmaceutical firms (N = 6776), yeast (N = 1458), WWW (N = 2526), and a sample of Internet network at AS level (N = 20566), where N is the number of nodes in the largest connected component of a network. We also study the crossover phenomenon from fractal to non-fractal networks upon adding random edges to a fractal network. We show that the crossover length ℓ*, separating fractal and non-fractal regimes, scales with dimension dB of the network as p−1/dB, where p is the density of random edges added to the network. We find that the correlation between degree and betweenness centrality increases with p.Interfirm networks; R&D collaborations, Pharmaceutical industry; ICT.

    Hidden Variables in Bipartite Networks

    Full text link
    We introduce and study random bipartite networks with hidden variables. Nodes in these networks are characterized by hidden variables which control the appearance of links between node pairs. We derive analytic expressions for the degree distribution, degree correlations, the distribution of the number of common neighbors, and the bipartite clustering coefficient in these networks. We also establish the relationship between degrees of nodes in original bipartite networks and in their unipartite projections. We further demonstrate how hidden variable formalism can be applied to analyze topological properties of networks in certain bipartite network models, and verify our analytical results in numerical simulations

    Topological properties and organizing principles of semantic networks

    Full text link
    Interpreting natural language is an increasingly important task in computer algorithms due to the growing availability of unstructured textual data. Natural Language Processing (NLP) applications rely on semantic networks for structured knowledge representation. The fundamental properties of semantic networks must be taken into account when designing NLP algorithms, yet they remain to be structurally investigated. We study the properties of semantic networks from ConceptNet, defined by 7 semantic relations from 11 different languages. We find that semantic networks have universal basic properties: they are sparse, highly clustered, and many exhibit power-law degree distributions. Our findings show that the majority of the considered networks are scale-free. Some networks exhibit language-specific properties determined by grammatical rules, for example networks from highly inflected languages, such as e.g. Latin, German, French and Spanish, show peaks in the degree distribution that deviate from a power law. We find that depending on the semantic relation type and the language, the link formation in semantic networks is guided by different principles. In some networks the connections are similarity-based, while in others the connections are more complementarity-based. Finally, we demonstrate how knowledge of similarity and complementarity in semantic networks can improve NLP algorithms in missing link inference

    Stability of a Giant Connected Component in a Complex Network

    Get PDF
    We analyze the stability of the network's giant connected component under impact of adverse events, which we model through the link percolation. Specifically, we quantify the extent to which the largest connected component of a network consists of the same nodes, regardless of the specific set of deactivated links. Our results are intuitive in the case of single-layered systems: the presence of large degree nodes in a single-layered network ensures both its robustness and stability. In contrast, we find that interdependent networks that are robust to adverse events have unstable connected components. Our results bring novel insights to the design of resilient network topologies and the reinforcement of existing networked systems
    corecore